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ABSTRACT 
 

 

We present a viscous computational fluid dynamics (CFD) simulation over two finite twisted 
wings configured so as to give a theoretically predicted elliptic and parabolic lift distributions.  
Local surface integration and farfield methods were used to calculate the induced drag.  The 
objective of this project is to relate work-potential losses (exergy destruction) to the 
aerodynamics forces in an attempt to validate a new design methodology based on the second 
law of thermodynamics.  Exergy destruction for the entire flow field was determined from 
the CFD results.  CFD results show that the parabolic case produces smaller induced drag 
and entropy generation rates than the elliptic case.  The entropy generation rates for both 
cases deviated significantly from the expected values, revealing the inaccuracy of entropy 
generation rate prediction for a turbulent flow.  This project, however, set up a basis in terms 
of analysis methodology, from which the future work will follow. 
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FOREWORD 
 

 
 This report, “A Unified Methodology for Aerospace Systems Integration based on 
Entropy and the Second Law of Thermodynamics: Wing Aerodynamics Assessment”, gives a 
technical discussion of research accomplished to develop the methods to compute entropy 
generation rate of different wing sections and planforms.  It is a part of a larger effort to 
develop the Second Law of Thermodynamics into the common currency for all aspects of 
system integration.  This report considers the work that needs to be accomplished by a flight 
vehicle (e.g., the generation of lift to keep a body aloft at sea–level conditions), and identifies 
sources of inefficiency associated with finite wing aerodynamics. 
 
 The work was led by Prof. Richard Figliola of Clemson University guiding a team of 
graduate students, Mr. Jason Stewart of Clemson University and Mr. Shohei Nomura of the 
University of Michigan.  The Air Force Office of Scientific Research sponsored the project 
under Program Manager Dr. John Schmisseur.  It was administered by the Air Force 
Research Laboratory, Air Vehicles Directorate with Dr. José Camberos as project advisor. 
 
 The work was accomplished during the period 24 May to 20 August 2004. 
 
 
 
     Dr. David J. Moorhouse 
     Director, Multidisciplinary Technology Center 
     AFRL Air Vehicles Directorate 
     Wright-Patterson AFB, OH 45433 
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SUMMARY 
 

 

 Using Air Force’s in-house code, Air Vehicle Unstructured Flow Solver, we 
simulated the three dimensional, viscous, laminar and turbulent, low subsonic flows around 
the finite wings with theoretically predicted elliptic and parabolic lift distributions.  The 
wings had a rectangular planform with geometric twists. Using the surface integration and 
the Trefftz plane methods, lift and the induced drag, respectively, were extracted for a 
comparison with the classical lifting-line theory.  As expected, the results for the lift 
compared favorably with the theoretical values; they had errors of no more than 6%.  The 
induced drag, on the other hand, experienced a maximum error of roughly 30%. We also 
attempted to perform both qualitative and quantitative analysis of the entropy generation 
rates and the exergy destruction rates.  For both elliptic and parabolic cases, the boundary 
layer seemed to produce the majority of the entropy.  We obtained the quantitative figures by 
taking the volume integral of the total entropy generation rates over the entire computational 
domain, including the wake.  These results deviated significantly from the approximate 
values, which are simply the product of the total drag and the cruise velocity. 
 Using the classical lifting-line theory, we have established the basic techniques for 
building the twisted wing geometries with the desired lift distributions.  The actual lift 
distributions of these wings yet require a validation.  Nonetheless, we have also established a 
grid generation technique for such twisted wings.  The implementation of the farfield induced 
drag extraction method to a viscous solution needs a further investigation.  In particular, we 
will examine the effect of the location and the size of the Trefftz plane on the induced drag.  
As for the entropy generation study, we will investigate the concept of effective viscosity, 
which takes into account the turbulence effect lost in the Reynolds averaging in the Navier-
Stokes equations.   
 Overall, the basis established during the summer of 2004 should provide a good 
starting point for the study of an exergy-based design methodology.  The following major 
objectives include the grid refinement study and the investigation of the relationships 
between the aerodynamic inefficiencies with the irreversible losses. 
 



2 

INTRODUCTION 
 

 
PROBLEM DEFINITION 

 
 An aircraft represents an intricate system composed of a number of interacting energy 
and non-energy based sub-systems.  Research in aerospace engineering has focused on the 
complicated procedure of integrating such subsystems for some time. Historically, designers 
have applied the design and optimization procedure only at a subsystem level.  For example, 
a typical objective function for the design of a wing has sought to minimize drag for a given 
lift distribution.  Design of a propulsion system has aimed to maximize thrust while 
maintaining as high thermodynamic efficiency as possible.  Integration of these components 
or subsystems, optimized separately, requires a great deal of experience and knowledge.  In 
addition, this subsystem-level optimization may ensure the optimum configuration for each 
subsystem, but does not guarantee an optimum design for the entire vehicle as a whole. 
 As flight vehicles evolve, they carry more and more intricate components that require 
distribution of power from an energy source [1].  With the need to develop a revolutionary 
design and optimization methodology for such systems, the basic approach started to shift 
from subsystem-level to system-level over the last few years.  The main questions asked 
include: Can we find a single common parameter that will hold across all components in all 
stages of design process?  To approach this question, consider all the constituent components 
as the energy-consuming systems.  One way or the other, they all have some inefficiencies, 
which can be considered in terms of energy used for work versus energy wasted [1].  The 
answer therefore seems to lie in this concept of irreversible losses that is an additive quantity.  
So, can we design a flight vehicle based not only on the first law of thermodynamics, but also 
on the second law of thermodynamics?  We seek to implement the second law of 
thermodynamics to provide a common metric that enables a comparison of the performance 
of different subsystems in terms of energy utilization, and to map in detail the location of all 
irreversible losses.  We find a growing consensus in the literature [2,3,4,5,6] that this should 
lead to the further advances of air vehicle design methodology and to a true system-level 
optimization. 
 As part of this system-level aerospace vehicle analysis and design concept, the project 
presented in this report focuses on the aerodynamics of low subsonic viscous flow over a 
finite wing.  Flow over a finite wing has been known to produce number of interesting 
phenomena.  Examples are tip vortex and trailing vortices that cause additional induced drag.  
A major portion of this project seeks to predict this induced drag and the corresponding 
aerodynamic losses using a 3D viscous computational fluid dynamics (CFD) simulation. 
 This task, however, does not come so easy.  In 3D viscous flow, a variety of sources 
subject the wing to an assortment of aerodynamic drag.  One of these, skin friction drag, 
results from the viscosity of air and from velocity gradients near the wing surfaces.  Another, 
the induced drag mentioned above, results from the generation of lift and downwash velocity 
as generated by the trailing and tip vortices.  Form drag constitutes another type of drag 
resulting from an unbalanced pressure distribution around the wing and of viscous action.  In 
addition to all these drag components, the inaccuracy of a CFD calculation appears as a 
spurious drag.  The challenging task of extracting induced drag from a CFD calculation 
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comes from the difficulties encountered in numerically distinguishing each drag source from 
one another.  This research project placed an emphasis on developing the induced drag 
extraction methods in context of our overall objective to apply the second law of 
thermodynamics. 
 Studying the energy efficiency in terms of second law of thermodynamics will help to 
analyze the lost work-potential that can otherwise perform useful work.  This thermodynamic 
quantity, known as “exergy” or “availability”, represents the maximum theoretical work that 
can be obtained from a system in taking it from a given chemical composition, temperature, 
and pressure to a state of chemical, thermal, and mechanical equilibrium with the 
environment [7]. For example, the fuel supplied to an aircraft represents its exergy or 
maximum work potential. To meet the mission requirements, exergy consumption 
(destruction) must occur. Destruction of exergy during any chemical or physical process 
equals the irreversible losses – entropy generation scaled by a reference temperature.  The 
second law of thermodynamics suggests that we should not necessarily strive to converse 
energy, but rather we should attempt to conserve exergy [8].  In the flow over a flight vehicle, 
minimizing the exergy destruction saves the available energy for distribution to other 
components of the aircraft for other types of useful work. 
 The authors of this report will study these concepts mentioned above using twisted 
finite wings configured to produce two limiting (spanwise) lift distributions; elliptic and 
parabolic.  These two special cases provide a good starting point for exploring new territory, 
since they are known to have special characteristics.  An elliptic lift distribution supposedly 
produces minimum induced drag, according to Prandtl’s classical lifting-line theory.  A 
parabolic lift distribution gives another special case suggested by Greene [9] to have 
minimum entropy generation. For the elliptic lift distribution in particular, classical theory 
makes some major approximations, making it an interesting study.  This project could serve 
as a numerical experiment to test the limits of validity of the well known theory. This report 
aims to present the contributions made thus far, the current status, and a number of 
suggestions for future work. 
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OBJECTIVES 
 

 

 The objectives of this project come in several parts.  Our first objective deals with the 
construction of twisted wing geometries with theoretically predicted lift distributions.  
Classical lifting-line theory provides the analytical expression for the required spanwise twist 
angle to produce a desired lift distribution.  For our second objective, we seek basic grid 
generation techniques for constructing such twisted wings.  We attempt to resolve the wake, 
as well as the turbulent boundary layer all the way down to the wing surface.  These two 
preparations lead to the simulation of 3D, viscous, low subsonic, incompressible flow using 
the Air Force Research Laboratory’s in house code, Air Vehicle Unstructured Flow Solver 
(AVUS) developed by the Computational Sciences Branch (AFRL/VAAC) over the past 
decade [11].  Lastly, the post-processing provides the visualization of the flow field, lift and 
drag forces, and entropy generation and exergy destruction rates.  This project should serve 
as a validation study for the classical lifting-line theory and a hypothesis developed by 
Greene [9].  We also propose to establish a solid basis for the development of a design and 
optimization methodology based on the second law of thermodynamics. 
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COMPUTATIONAL METHODOLOGY 
 

 

We created the wing geometries and the grid using Gridgen version 15.03 (we give a 
brief description of how the grids were created below).  The CFD code AVUS is a cell-
centered finite-volume code.  Its fundamental algorithm utilizes a scheme of first order 
accurate in space and time, and the grid-aligned exact Riemann solution method of Gottlieb 
and Groth [11].  The second order accurate spatial approximation method utilizes van Leer’s 
MUSCL scheme.  For an accelerated convergence, AVUS uses a local time stepping 
algorithm for steady state solutions.   However, the low speed cases (M ≤ 0.2) with large 
jumps in spacing and/or cell size may require time-accurate calculations [11].  Because of 
computational constraints, our grid suffered from large jumps in cell size, so, we attempted to 
achieve a steady state solution using the time accurate option. Implementing the time 
accurate solver did not, however, yield fully converged solutions.  Poor grid quality in certain 
regions may have contributed to this.   The computational constraints put a limit on cell count 
and consequently yielded non-ideal grids. 
 We attempted to obtain solutions from both laminar and turbulent calculations with 
the Wilcox k-ω model.  Wilcox k-ω model is a two-equation Reynolds Averaged Navier-
Stokes (RANS) type model, which performs well in the near-wall region.  From these 
simulations, we investigated the effect of turbulence model on the results. 
 The flight conditions used for this study are at a pressure of 1atm and temperature of 
288K (sea-level), at a steady cruise Mach number of 0.2.  The wing has a rectangular 
planform with an aspect ratio of 6 and a constant NACA0012 airfoil section of 1m chord, and 
a span of 6m.  The wing has an assumed weight of 7300 N. 



6 

GEOMETRY AND GRID GENERATION 
 

 

COMPUTATIONAL DOMAIN 
 

Since the wing load and the flow field are symmetric about mid-span of the wing for 
a level flight, the computational domain includes only a half of the wing with one boundary 
condition set as the plane of symmetry.  A total of seven faces formed the computational 
domain (Figure 4.1).  We set all faces as the far-field boundary condition, except the wing 
surface and the face that splits the mid span of the wing.  We labeled this mid-span face as 
the symmetry face and modeled it with as a solid wall with slip boundary conditions.  The 
wing surfaces have no-slip wall boundary conditions.  The outer faces that enclose the wing 
extends ten chord lengths behind the wing, five chord lengths above and below the wing, five 
chord lengths in front of the wing, and two span lengths in width. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CLASSICAL LIFTING-LINE THEORY 
 
Our intent was to construct a wing that produced an elliptic and parabolic lift 

distribution along the spanwise direction as two separate cases to test against classical lifting-
line theory.  The elliptic lift distribution supposedly produces minimum in induced drag.  
Greene [9] suggests that a parabolic lift distribution produces minimum entropy with an 
optimal bending moment at the root. Therefore, we are testing the hypothesis that a design 
that minimizes drag and a design that minimizes entropy production are not the same thing. 

Figure 4.1: Overall view of the computational domain 
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In the classical lifting-line theory, the lift distribution varies as a function of the 
effective angle of attack, the spanwise chord distribution, and the aerodynamic twist.  In this 
project, chord stays constant along the span and the wing has no aerodynamic twist. Hence, 
the lift distribution becomes a function of the effective angle of attack in the spanwise 
direction only. 

When a finite wing produces lift, its effective angle of attack is less than the 
geometric angle of attack, the angle between the free stream velocity vector and the chord 
line.  A high pressure region exists on the lower surface relative to the upper surface of the 
wing.  At the wing tip, the lift must be zero, and therefore the upper and lower pressures must 
equate. Consequently, the flow at the tip tends to move from the high pressure region on the 
lower surface to the lower pressure region on the top. This causes a spanwise flow 
component along the entire wing span. Effectively, the wing suffers from a decreased lift 
coefficient and an increased drag coefficient relative to the two-dimensional case (or an 
infinite wing case). 

This spanwise flow creates the wing tip vortices (Figure 4.2 and 4.3).  Since the fluid 
on the lower surface of the wing tends to flow outward toward the tip and the fluid on the 
upper surface tends to flow inward toward the root, a trailing vortex forms when the these 
two flows meet at the trailing edge.  The trailing vortex across the wing span creates a vortex 
sheet, which induces a downwash velocity given by 

 ( )dz
zz

zzw
b

b
∫

−
−

Γ′
−=

2/

2/
04

1)(
π

(4.1)

 
where Γ(z) is the circulation distribution along the span, U∞ is the free stream velocity, and b 
is the total span length.  This downwash velocity effectively reduces the approach angle of 
the free stream velocity vector by an amount of induced angle.  The effective angle of attack 
equals the difference in the geometric and induced angles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

DANTEC Measurement TechnologyDANTEC Measurement Technology

Figure 4.2:  Wing Tip Vortex (Picture from DANTEC Measurement Technology)  
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We can achieve a particular lift distribution by giving the wing a geometric twist, an 

aerodynamic twist, or a combination of both.  Geometric twist refers to a variation in the 
geometric angle of attack whereas aerodynamic twist refers to varying the airfoil sections.  
We chose the geometric twist for this project for the relative ease of geometry and grid 
generation.  The equation of lift coefficient, 

 
 )(

2
1)( 0

2
0 zcUmzL αρ∞=  (4.2)

     
indicates that the effective angle of attack, α0 must follow the same trend as the desired lift 
distribution, since the lift slope m0 (2π according thin airfoil theory), freestream density ρ, 
chord c, and the freestream velocity U∞ stay constant.  For instance, in order to obtain an 
elliptic lift distribution, α0 must vary in an elliptic fashion as well.  The choice of the root 
effective angle of attack is mission-specific.  For an elliptic case, we chose an arbitrary root 
effective angle of attack of 5°, which corresponds to an assumed aircraft weight of about 
7300N.   
 The induced angle refers to the change in approach angle experienced by the free 
stream velocity due to the downwash velocity discussed earlier.  From geometry (Figure 4.4), 
downwash angle (αi) is simply 

 

∞

−=
U

zwzi
)(tan)( 1α  (4.3)

  
which simplifies to  

 

∞

=
U

zwzi
)()(α  (4.4) 

  
 

Figure 4.3:  Wing tip vortex from CFD solution 
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for a small downwash velocity compared to the freestream velocity.  For an elliptic lift 
distribution, the induced angle of attack stays constant along the span:  
 

 

∞

Γ
−=

bUi 2
0α  (4.5)

       
Here, Γ0 is the root circulation, determined from the 5° root effective angle by 
 

 
2

00
0

α∞=Γ
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Now, the geometric angle as a function of span can be determined by 
 

 )()()( 0 zzz iααα +=  (4.7)
                                                                                               
The resulting function for the geometric angle of for an elliptic lift distribution with a 5° 
effective root angle is then 
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2/
1)( ⎟

⎠
⎞

⎜
⎝
⎛−=

b
zz rootαα  (4.8)

 
where αroot is a root geometric angle of attack of 6.30899°.     

In order to have an accurate comparison, both elliptic and parabolic wings must 
produce the same total amount of lift.  This requires that the area under a curve of effective 
angle of attack vs. wing span should be equal when both wings are flying under the same 
flow conditions.  Therefore, 
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Solving this equation yields the root effective angle of 5.89049° for the parabolic case.  The 
induced angle of attack as a function of span for the parabolic case turns out to be 
 

w

Free Stream

Modified Free Stream

αi
w

Free Stream

Modified Free Stream

αi
w

Free Stream

Modified Free Stream

αi

Figure 4.4:  Velocity Triangle 
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This equation indicates that the induced angle of attack approaches negative infinity as z 
approaches b/2 (wing tip).  Obviously, this presents a problem when building the wing 
geometry.  To overcome this problem the slope of the geometric angle of attack curve at 
99.7 % of the span was used to extrapolate out to the tip.  This resulted in a root geometric 
angle of attack of 7.85398° and a tip geometric angle of attack of -4.99262° for an overall 
geometric twist of 12.85°.  Interestingly, the parabolic case has the negative tip geometric 
angle of attack.  Nonetheless, both effective angles at the wing tip should be 0°. 
 
 

CONSTRUCTING THE WING GEOMETRY 
 

The wings were constructed using a straight leading edge that has no slope in any 
direction.  We attached the airfoil sections to the leading edge, rotated the proper amount to 
give the desired geometric angle of attack.  Once we placed an appropriate number of airfoils, 
an interpolating scheme in Gridgen was used to create the surface between the airfoil 
sections.  Figure 4.5 shows an example of the wing geometry. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GRID GENERATION 
 

Constructing a proper grid perhaps takes up the most essential part of a CFD 
simulation.  Grid construction unfortunately remains more of an art than a science and 
consequently requires a significant amount of time to develop a proper grid to adequately 
resolve the essential flow physics.  Therefore, studying the flow field a priori is essential, 
especially when the solution-adaptive grid refinement is not available.  Overall, the grid is 

Figure 4.5:  Twisted Wing Geometry 
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hybrid, consisting of the structured hexahedral cells in the boundary layer, and the 
unstructured prism-shaped cells elsewhere. 
 In a viscous solution one obvious place that requires a fine grid resolution is in the 
boundary layers.  There are some guidelines to ensure the adequate resolution in this region.  
For the flow conditions for this study, the boundary layer will experience a transition from 
laminar to turbulent at roughly ten percent of the chord from the leading edge.  Because of 
the very high gradients at the surface of the wing, especially for turbulent regions, it is 
necessary to cluster the cells in that region. 
 In a turbulent boundary layer there exists a laminar viscous sublayer that extends 
from the wall out to y+ (a normalized distance that is a function of shear stress) of about five.  
The first node distance from the wall should have a y+ value of one or less when using a two-
equation turbulence model.  This ensures that at least a few cells will describe the viscous 
sublayer.  Determination of the first node distance from the wall starts from the flat plate 
boundary layer approximation.  First the Reynolds number based on chord length must be 
determined: 

 
υ

cU∞=Re  (4.11)

 
This Reynolds number automatically determines the skin friction coefficient with the 
empirical correlation (for turbulent flow): 
 

 
2.0Re

0592.0
=fc  (4.412)

 
Using this value for the skin friction coefficient, the shear stress at the wall is then 
 

 
∞= Uc fw ρτ

2
1  (4.13) 

 
With this shear stress approximation, the friction velocity can be found: 
 

 

ρ
τ wu =∗  (4.14)

 
Now the first node distance is obtained by setting y+ equal to one in the equation relating 
friction velocity to y+: 

 
∗

+

=
u
yy υ  (4.15) 

 
Using above relations, we see that the necessary first node distance is roughly 5x10-6 

m.  A problem arises with such a small length is used to construct a cell since the volume is 
now about 10-18m.  This may increase truncation error significantly, and the computer may 
easily treat this volume as practically zero.  In fact, the CFD utility code used to check grid 
quality for AVUS, Blacksmith, flags such a grid as unacceptable if this first node distance is 
used.  To overcome this problem, we scaled up the entire model 100 times and used the CGS 
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(centimeter, gram, second) units when executing AVUS.  Figure 4.6 shows the resulting y+ 
contour plots on the wing surface.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 It has been suggested that roughly 150 to 200 points chordwise on both the top and 
bottom of the wing should suffice for an accurate drag prediction when used in conjunction 
with the other parameters concerning the boundary layer grid [10].  The leading and trailing 
edge require clustering of the grids.  This allows the grid to accurately resemble the smooth 
curvature and provides a good transition between cells on the trailing edge and those in the 
near-wake.  The first node distance of 0.450mm on the leading edge was taken from [10].  
We also rounded the sharp trailing edge to facilitate the grid generation on the wing tip and 
the near-wake.  To accurately trace this small curvature, a first node distance of 0.006 mm 
was used on the trailing edge. 

Within the high-gradient regions like the boundary layer, the growth rate of the cells 
also plays an important role.  It is suggested that the growth rate should at most be 20–30% 
[10] to avoid a significant error associated with the gradient calculations.  Another generally 
accepted rule-of-thumb is to have at least ten cells within the boundary layer normal to the 
wall.  We approximated the boundary layer thickness at a tenth of the chord, using the 
Blasius solution for the flat plate laminar boundary layer: 

 
 

∞

=
U

xυδ 5  (4.16)

 
The flat plate laminar boundary layer solution was used here since this is approximately the 
transition location from laminar to turbulence.  Using this analytical solution gives a normal 
distance in which 10 cells should be placed.  However, when considering the first node 
distance and a growth rate of 1.2, there will be more than 10 cells in the boundary layer at 
this location.  Even with the turbulence models assuming a turbulent boundary layer over the 
entire wing, the grid-stretching scheme ensures 10 cells within the boundary layer. 
 Another important parameter in the boundary layer grid generation is the number of 
nodes along the span of the wing.  It was suggested through a personal correspondence [10] 
that 100 points spanwise would be a reasonable number to start with.  However, since the 
grid points need to be clustered at the wing tip, the number of required grid points could rise 
to about 200.  The reason for the clustering at the wing tip is to allow for a good spanwise 

Figure 4.6:  Normalized distance, y+ contours on the  surface of the wing. 
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transition from a wing tip boundary layer grid.  In this project, however, we could only afford 
eighty nodes due to computer resource limitations.  A view of the surface grid on the wing is 
shown in Figure 4.7 and 4.8.   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The wing tip presents a difficulty when producing a high quality structured grid.  
Having a sharp trailing edge results in highly skewed cells that could adversely affect 
convergence of the solution.  Therefore, we rounded off the trailing edge at 99.75% of the 
chord to facilitate the grid generation procedure.  Since the wing tip region will contain 
complicated flow, the boundary layer mesh and the wing tip mesh should have as smooth 
transition in size as possible.  An illustration of this is shown in Figure 4.9.  Figure 4.10 and 
Figure 4.11 show the overall wing tip grid and trailing edge tip grid, respectively.  The wing 
tip was divided into several sections to create the grid shown in Figure 4.10.  Again, an 

Figure 4.7:  Wing Surface Grid 

Figure 4.8:  Wing Surface Grid and Surrounding 

Tight clustering 
normal to wing 
in boundary 
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Figure 4.10:  Overall Wing Tip Mesh 

affordable grid count was limited by computer resources.  Therefore, the grid suffered from 
discontinuous jumps in size, which are apparent in Figure 4.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 4.9: Leading Edge Grid to Tip 

Wing

Need to have smooth 
transition in cell size 

Figure 4.11:  Trailing edge tip grid 

Undesirable cell volume transition which 
will be improved when more points are 
added chordwise along the wing 
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 The trailing vortices in the wake can be resolved effectively with the unstructured 
grid without increasing the cell count significantly (Figure 4.12).  Here, the grid is clustered 
in the wake and grows quickly to the outer region.  We approximated the growth rate of the 
wake height as 2x1/3 [13] where x is the streamwise location. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
A structured cylindrical grid was also constructed around the wing on top of the structured 
boundary layer grid.  The surface of the boundary layer grid follows the twist of the wing in 
order to maintain a constant node distance from the surface of the wing.  This does not 
provide a uniform surface to sweep a face along to create a volume grid for the outer region.  
Therefore, we placed a cylindrically shaped structured grid to provide a uniform surface.  A 
close up view of this grid is shown in Figure 4.13.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Once we generated the grid for the half of the domain containing the wing, the 
volume grid was completed by simply sweeping all faces that lie in the mid plane of the 
domain, including the wing tip grid, in a linear fashion.  

Figure 4.12:  Slice through domain showing grid 

Outer 

Wake

Win

Figure 4.13:  Cylindrical grid around the wing 
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RESULTS 
 

 

 Following accepted guidelines for the grid generation resulted in a total cell count in 
the order of several million.  However, slow computational speed hindered the calculations 
from reaching full convergence within the given time limit.  The machines used for all the 
calculations consisted of a Linux-based Beowulf cluster of Pentium III 800MHz processors 
each with 1GB RAM.  The cluster contained sixty four processors in total and we used the 
maximum of thirty processors for any given job.  Executing AVUS on thirty processors to 
solve incompressible viscous flow on a grid with 3.6 million cells, for example, took roughly 
thirty minutes per iteration.  Reasonable convergence generally required at least 5000 
iterations.  Therefore, to achieve satisfactory convergence at this rate would require nearly 
104 days. 
 To obtain results in a reasonable time, it was necessary to coarsen the grid.  In 
addition, we increased the growth rate of the cell size as much as possible and coarsened the 
wake region as well.  We filled the outer region with a very coarse grid to reduce the number 
of cells as much as possible, so the growth rate in this region exceeds 1.3.  After this grid 
coarsening process, the total cell count dropped down to 1.79 and 1.87 million for the elliptic 
and parabolic wing, respectively.  With cell count of 1.87 million, for example, it took 
roughly four days to complete 3800 iterations. 
 For every simulation, we let twenty processors work in parallel to solve the flow as 
close to full convergence as possible to a steady state under low subsonic condition (M=0.2, 
Rec=4,400,000 and standard temperature and pressure). Residuals for continuity, y+, and 
forces in the x and y direction respectively, Fx and Fy, were monitored during the calculation 
to check the convergence status.  However, grid quality hampered the calculations from 
reaching full convergence.  Therefore, we attempted to bring the solutions as close as 
possible to full convergence.  On average, it took roughly 5000 iterations for y+ residuals to 
level off, but the force components in the x-direction continued to exhibit large oscillations, 
even after 10,000 iterations. 
 
 

VALIDATION OF GRID QUALITY 
 
 To verify grid resolution one may check the y+ values on the wing surfaces, which 
should be less than unity.  Contours of y+ showed that for both elliptic and parabolic cases, y+ 
values stayed well below one on all wing surfaces, except at the very small region towards 
the tip (Figure 6.1), where it exceeded two.  Although these high y+ values lie in such a tiny 
strip of surface that they may not be affecting the lift and drag values significantly, we 
suggest that the first grid size normal to the wing surface in these areas should be reduced. 
 Figure 6.2 shows the pressure contour around the sectional plane at z = 2.9m for the 
elliptic case.  Non-smooth contour lines in the outer regions indicate the under-resolved flow.  
These regions require further grid refinement in future work, since they could affect the 
solution in the vicinity of the wing surface. 
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COMPARISON OF LIFT AND DRAG WITH LIFTING-LINE THEORY 
 
 One of the objectives of this project is to predict induced drag and compare with the 

theoretical values from lifting-line theory.  However, prediction of aerodynamic forces, 

especially drag prediction is a very difficult task.  Therefore, we are in a sense testing the 

capabilities of aerodynamic force prediction of CFD. 

There exist several different methods for predicting aerodynamic forces.  A typical 

method of calculating total drag and lift forces is the surface integration technique, in which 

Figure 6.1: Region of high y+ values 

Figure 6.2: Pressure contour at spanwise location z = 2.9m for elliptic 
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the pressure and the skin friction are integrated over the solid surfaces.  Often times, using 

this method yields an accurate lift prediction, but faces difficulties in total drag prediction.  

This inaccuracy comes from the need to approximate the smooth curvature of the object with 

flat cells and to numerically approximate high gradients [14] in the boundary layer.  These 

approximations lead to production of spurious contributions to drag as well, which appears in 

pressure and skin friction over a body surface. Therefore, spurious contribution cannot be 

differentiated from the physical drag by the surface integration method [15].   

 We therefore implemented the farfield analysis of Trefftz plane for the induced drag 

extraction.  Formulating momentum conservation equations for the control volume that 

encloses the entire wing leads to the following simple integral to be taken over the cross-flow 

plane (Trefftz plane) at a downstream location of the wing (Figure 6.3): 

 

 dSwvDi ∫ += ∞
22

2
1 ρ  (6.1)

 
Here, v and w are the lateral velocity perturbations.  This integral simply sums the lateral 

kinetic energy across the Trefftz plane.  The idea is that this lateral kinetic energy is caused 

purely by trailing vortices, the reversible phenomena that are the source of induced drag.  

This equation assumes the negligible streamwise velocity perturbations at the location of the 

Trefftz plane.   

 
Figure 6.3: Schematic of Trefftz plane 

 
 

 Many researchers have applied Trefftz plane method to the inviscid case frequently 

and obtained fairly accurate drag and lift results.  In an inviscid case, the location of the 

Trefftz plane is not important, as long as the streamwise velocity perturbation can be 

considered negligible, and the plane encompasses the entire laterally-perturbed area.  
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However, when it is applied to the viscous case, computation gets more difficult because of 

the natural viscosity of the fluid that tends to damp out these lateral motions.  In addition, the 

artificial viscosity embedded in the numerical scheme itself also contributes to the dissipation 

of the solution in the wake, especially where the grid gets coarse.  Therefore, the location of 

Trefftz plane should be where the flow experiences as little influence from the artificial 

viscosity as possible.  In this project, we placed it at six chord-lengths downstream of the 

wing. 

 Table 6.1 shows the result for the induced drag coefficient from the lifting-line theory, 

as well as the results from the CFD calculation.  Total drag coefficients from the surface 

integration method are also tabulated for comparison.  It is apparent that the CFD calculation 

under-predicted the theoretical values.  This may be due to the dissipating transverse kinetic 

energy, which is a consequence of both natural and artificial viscosity.  It also predicted the 

induced drag for the parabolic cases to be smaller than the elliptic cases.  This contradicts 

with the classical theory that says elliptic lift distribution produces minimum induced drag. 

 Table 6.2 shows the result for lift coefficient calculated by surface integration over 

the wing surface.  Elliptic and parabolic cases have the same theoretical values, since the 

wings were designed to have the same total lift and they have the same wing surface area.  

Lift coefficient values are more accurate than the induced drag values. 

 One important point about the classical lifting-line theory is that the derivation of 

minimum induced drag for elliptic lift distribution assumes a planar vortex sheet that extends 

to infinity (inviscid approximation).  In actual flow over a finite wing however, the vortex 

sheet rolls up out–of-plane (Figure 6.4 and 6.5) and dissipates because of viscous effect.  

Although classical lifting-line theory is shown to provide surprisingly accurate induced drag 

distribution [9], we should not exclude this approximation from the list of possible reasons 

for differences when comparing theoretical and predicted induced drag.   

 
ENTROPY GENERATION AND EXERGY DESTRUCTION RATE 

 
 The most important objective of this project was to test the capabilities of CFD to 

calculate the entropy generation and the exergy destruction rates and relate them to the 

aerodynamic terms, such as lift and drag.  AVUS calculates the total entropy generation rate 

in every cell for viscous flow by 
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and we normalized it as follows: 
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In equation 6.2, the first and the second term corresponds to the viscous and heat entropy 

contribution to the total entropy generation rate.  For low subsonic incompressible flow, 

temperature gradients will be minimal.  Therefore the majority of the contributions will come 

from the viscous term.  Temperature gradients are calculated indirectly from density and 

pressure. 

Figure 6.5 – 6.10 are the contour plots of the total entropy generation rate for the 

elliptic turbulent case.  As expected, the boundary layer, leading edge region and the near 

wake produces the highest entropy generation rate (Figure 6.8 and 6.9).  Entropy generation 

rate in the region indicated by blue is essentially zero.   

 Figure 6.11 – 6.14 show the contour plots of total entropy generation rate for the 

parabolic turbulent case.  This wing produced a similar total entropy generation rate plot as 

compared to the elliptic case.   

 Although majority of the entropy generation happens within the boundary layer 

where the high velocity gradients exist, it is natural to think that the wake and its entropy 

generation is a consequence of the moving wing disturbing the flow.  It is also natural to 

think that wings with different lift distributions produce wakes with different levels of 

entropy generation and there may be a connection between entropy generation rates over the 

wing surface and in the wake.  Therefore, to account for both cause and effect, volume 

integrals of the total entropy generation rates were computed during post-processing: 

 ( ) ∫∫∫=
v

gentotalgen dvSS  (6.4)

 
It is interesting to note that for steady motion the theoretical value of this quantity should be 

related to the power consumed by the moving wing and the reference temperature by the 

following simple expression: 
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This equation simply says that the power consumed by the horizontally moving, 

unaccelerated wing, ∞DU should equal to the exergy destruction, ( )
totalgenST0 .  Total drag, D, 

was approximated from the total drag coefficient directly from AVUS.  Therefore equation 

6.5 only provides an approximate value to which the results can be compared.  Table 6.4 

tabulates both the reference values and the CFD result. 

 Notice the significant differences between the expected values and the results from 

CFD.  This could be due to several reasons:  First of all, according to the flat plate boundary 

layer theory, this problem should contain laminar region up to roughly 11% of the chord, and 

transition and turbulent region elsewhere.  Solving such flow with laminar Navier-Stokes 

equations assumes laminar flow everywhere in the computational domain and therefore loses 

the effect of turbulence. Secondly, the equation for total entropy generation rate (Eq.6.2) only 

accounts for the molecular viscosity.  In CFD, Reynolds Averaging Navier-Stokes (RANS) 

types of equations tend to dissipate a lot of small scale structures in the flow.  This leads to 

simplified flow field and gradients, and apparently inaccurate entropy generation predictions. 

There exists a concept of effective viscosity in turbulence models for RANS solvers.  Its 

purpose is to recover the lost effect of those small-scale structures. The effective viscosity is 

known to be up to two orders of magnitude greater than the absolute viscosity. Since the 

effective viscosity value was not implemented in these entropy computations (equation 6.2), 

this important concept will be investigated in the future work. 
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DISCUSSION 
 

 

 As noted earlier, computational and time constraints limited our study significantly.  

This led to under-refined areas within the grid and undesirable growth rates in the outer 

region as well as very large cells near the leading edge of the wing.  These factors should be 

kept in mind when examining the results of this study. 

 As mentioned in the results section, the lift values from the CFD simulations 

compared favorably with the theoretical values from the lifting line theory.  The induced drag 

values were calculated to be lower in both cases as compared to the theoretical values.  The 

parabolic case resulted in the lower induced drag than the elliptic case, which disagrees with 

the classical lifting line theory.   

 Induced drag is not very easily extracted from a CFD simulation.  Surface integration 

only yields the total drag from the pressure and the skin friction.  Thus it is not possible to 

extract only the induced drag contribution from the surface integration.  Trefftz plane method, 

on the other hand, attempts to calculate the induced drag from the lateral velocity 

perturbations caused only by the source of induced drag.  The difficulties, however, of 

applying this method to a viscous CFD results were demonstrated in this project.  As 

expected, the calculated induced drag was smaller than the theoretical values, possibly due to 

dissipated lateral velocity perturbations.  We expected that the induced drag will further 

decrease with the distance from the wing.  This is indeed the case as seen in Figure 7.1, 

which shows how the induced drag coefficient decreases as the Trefftz plane is moved 

further downstream.  Figure 7.1 also shows the effect that the area of the Trefftz plane has on 

the induced drag calculations.  All Trefftz planes extended six meters in the spanwise 

direction but were varied in the vertical direction.  This was done to see the effect the area of 

the Trefftz plane has on the calculations.  The Trefftz plane should not extend to the very 

course outer regions to avoid the contamination from the large cells and the boundary 

condition.  Therefore an appropriate sized Trefftz plane needs to be found.  It is apparent 

from the results shown in Figure 7.1 that a future study needs to investigate this further to 

find a good balance in the Trefftz plane area. 
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 The steep drop in the induced drag coefficients at small streamwise distances in 

Figure 7.1 can be attributed to the fact that the streamwise velocity perturbation is not 

relatively small close to the wing.  This negates the use of the integral of the lateral velocity 

perturbations, which assumes the negligible streamwise velocity perturbation.  A modified 

Trefftz plane approach should be used in these regions in which the streamwise velocity 

perturbation is subtracted from the lateral velocity perturbations.  After about five meters the 

slope of the curves becomes essentially constant.  This constant decrease in this region can be 

attributed to the viscous effect.   

Calculated entropy production rates deviated significantly from the expected values.  

As mentioned in the results, the viscosity value used in equation 6.2 may not be accurate.  

Further investigation using the effective viscosity in the turbulence cases will be performed.  

At present AVUS does not have capability for this calculation.  However from other studies 

concerning 2D airfoils it has been seen that the effective viscosity can be as much as 100 to 

400 times higher than the natural viscosity in some cells. This would place our entropy 

predictions close to similar order of magnitude as the expected values. 

 A computational domain in any CFD simulation cannot be infinite.  When modeling 

airfoils and finite wings it is desirable to have the top, bottom, front, and side faces in the 

freestream region.  Having the back face in the freestream region may require too many grid 

points.  Therefore it may be possible that the wake and trailing vortex sheet may extend 

beyond the back face.  Thus the volume integration may not capture all of the entropy 

production caused by the wing.  Depending on how much entropy is being produced in the 

wake, this could cause the entropy production values calculated from the CFD simulations to 

deviate significantly from the expected values.  When comparing two wings, however, this 

should not matter as long as the domains are of equal shape and volume.  
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CONCLUSION 
 

 

 We conducted this study over the summer of 2004. A technique to create twisted 

wing geometries to give a desired lift distribution was demonstrated.  A grid to capture the 

important flow physics was generated on the twisted wings.  With this gridding methodology 

we obtained the accurate lift values, but and the drag predictions were shown to be only 

reasonable.  We have also demonstrated the method of Trefftz plane to calculate the induced 

drag.  This method resulted in fairly accurate results for induced drag.     

 Some interesting results were obtained from the CFD simulations.  One of them is 

that the parabolic case gave less induced drag that than the elliptic case.  This goes against 

the classical lifting line theory which says the elliptic lift distribution yields the minimum 

induced drag.  Also the parabolic case gave a lower entropy production than the elliptic case.  

This agrees with Greene’s [9] hypothesis that says that parabolic lift distribution will yield 

minimum entropy generation. However, it is important to note that the solutions are neither 

fully converged nor grid independent. The actual lift distributions were not verified and will 

be a focus of future work. At best, we have developed the necessary methodology to proceed 

into the work to follow.    
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FUTURE WORK 
 

 

 Since computational restraints hindered grid quality and cell count, grid independence 

studies were not possible.  This will be the focus of future work.  We will conduct further 

CFD simulations using Fluent which allows for solution-adaptive grid refinement by adding 

cells in the area of interest.   

 Fluent also has the ability to allow the user to add cells anywhere in the domain.  This 

feature should help improve grid quality in areas that have large jumps in cell size. 

Performing this task in Fluent allows the user to add grid points in a specified region and not 

affect any other region within the domain.  This allows for efficient grid refinement and 

should help with solution convergence which was not achieved during the summer of 2004. 

 We will also attempt to evaluate the actual lift distribution that the wings are 

producing to see the validity of the lifting-line theory and our model generation technique.   

To give more than two data points linking drag with exergy destruction, a wing with 

an arbitrary lift distribution will be modeled.  This wing will be constructed to give the same 

total lift and will be composed of the same airfoil sections used in this study.  Doing this will 

provide more insight into the connection between drag and exergy destruction.  

 We expect that the future work will yield grid independent, converged solutions of 

the cases performed thus far.  From this, the drag, entropy production and exergy destruction 

rates will be related in terms of thermodynamic quantity.  Using these results, we can then 

proceed to validate the classical lifting-line theory.  
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Figure 6.4(a): Rolled up streamlines for elliptic case 

 

Figure 6.4(b): Rolled up streamlines for parabolic case 

 



27 

 
Figure 6.5: Total entropy generation rate for elliptic turbulent case at z = 0.5m 

 
 
 
 

 
Figure 6.6: Total entropy generation rate for elliptic turbulent case at z = 1.5m 

 
 
 

 
Figure 6.7: Total entropy generation rate for elliptic turbulent case at z = 2.9 m 
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Figure 6.8: Total entropy generation rate at leading edge for elliptic turbulent case at z = 2.9 

m 
 

 
Figure 6.9: Total entropy generation rate at trailing edge for elliptic turbulent case at z = 2.9 

m 
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Figure 6.10: Total entropy generation rate for elliptic case at y = 0m (top view). 

 
 
 

 
Figure 6.11: Total entropy generation rate for parabolic case at z = 0.5m 

 
 
 

 
Figure 6.12: Total entropy generation rate for parabolic case at z = 1.5m 
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Figure 6.13: Total entropy generation rate for parabolic case at z = 2.9m 

 
 

 
Figure 6.14: Total entropy generation rate for elliptic case at y = 0m 

 
 

 
Figure 7.1:  Induced drag coefficients at varying streamwise 

locations with varying Trefftz plane area (Elliptic Turbulent Case)
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 CDi CD (Surface Integration) 

 Lifting-Line Trefftz Plane  

Elliptic Laminar NS 0.007909 0.027967 

Elliptic kω 
0.009839 

0.008127 0.015342 

Parabolic Laminar NS 0.006933 0.016550 

Parabolic kω 
0.010956 

0.007754 0.017092 
Table 6.1:  Induced and total drag coefficients 

 
 
 
 

 CL 

 Lifting-Line Theory Surface Integration 

Elliptic Laminar NS 0.42644 

Elliptic kω 
0.43064 

0.40499 

Parabolic Laminar NS 0.44475 

Parabolic kω 
0.43064 

0.43673 
Table 6.2:  Induced and total drag coefficients 

 
 
 
 

Elliptic Parabolic 
 

Laminar Turbulent Laminar Turbulent 

CD,press 2.7413x10-2 1.1152x10-2 1.2602x10-2 1.2621x10-2 

CD,friction 5.5440x10-4 4.1898x10-3 3.9471x10-3 4.4766x10-3 

CD,total 2.7967x10-2 1.5342x10-2 1.6550x10-2 1.7092x10-2 

CL,press 4.2627x10-1 4.0516x10-1 4.4489x10-1 4.3689x10-1 

CL,friction 1.7429x10-4 -1.7116x10-4 -1.3489x10-4 -1.6052x10-4 

CL,total 4.2644x10-1 4.0499x10-1 4.4475x10-1 4.3673x10-1 
Table 6.3: Drag and lift coefficients calculated with surface integration over the wing surface 
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 Parabolic Elliptic 

Total Sgen Rate Laminar Turbulent Laminar Turbulent 

Expected Values (W/K) 66.4 68.6 112.2 61.56 

CFD Results (W/K) 0.63758 0.42924 1.23474 0.46412 

Table 6.4:  Expected total entropy generation rate and the results from the CFD simulations 
 



33 

REFERENCES 
 

 

[1] Moorhouse, D., “Proposed System-Level Multidisciplinary Analysis Technique Based 
on Exergy Methods”, Journal of Aircraft Vol.40, No.1, January-February 2003. 

[2] Bejan, A., “Constructal Theory: Tree-Shaped Flows and Energy Systems for Aircraft”, 
Journal of Aircraft Vol. 40, No. 1, January-February 2003. 

[3] Paulus, D., and Gaggioli, R., “Rational Objective Function for Vehicles”, Journal of 
Aircraft Vol.40, No. 1 January-February 2003. 

[4] Roth, B., and Mavris, D., “Generalized Model for Vehicle Thermodynamic Loss 
Management”, Journal of Aircraft Vol.40, No. 1 January-February 2003. 

[5] Roth, B., and Mavris, D., “Method for Propulsion Technology Impact Evaluation via 
Thermodynamic Work Potential”, Journal of Aircraft Vol.40, No. 1 January-February 
2003. 

[6] Danner, T., and Mavris, D., “Foundational Concepts for a Work Potential-Based 
Design Methodology”, AIAA Technical Paper No. 2003-6707. 

[7] Danner, T., Marvis, D., “Foundational Concepts for a Work Potential-Based Design 
Methodology”, AIAA Technical Paper No. 2003-6707. 

[8] Simpson, M., and Kay, J., Availability, Exergy, the Second Law and all that…. 1989 
<http://www.fes.uwaterloo.ca/u/jjkay/pubs/exergy/index.html> 

[9] Greene, G., “An Entropy Method For Induced Drag Minimization”, Technical Paper 
Series No. 89-2344. 

[10] Mavriplis, D., Aerodynamic Drag Prediction using Unstructured Mesh Solvers. 
National Institute of Aerospace. 

[11] Strang, W. Z., Cobalt60: User’s Manual. Air Force Research Laboratory, CFD Research 
Branch, Wright-Patterson Air Force Base, Sept. 2000. 

[12] Bourdin, P., “Planform Effects On Lift-Induced Drag”, AIAA Technical Paper No. 
2002-3151. 

[13] White, F., Viscous Fluid Flow. McGraw-Hill Inc., New York, 1994, pp. 471-479. 
[14] Hunt, D., Cummings, R., and Giles, M., “Wake Integration for Three-Dimensional 

Flowfield Computations: Applications”, Journal of Aircraft Vol. 36, No. 2, March-
April 1999. 

[15] Bourdin, P., Numerical Prediction of Wing-Tip Effects On Lift-Induced Drag. 
International Council of the Aeronautical Sciences, 2002. 




